Oxidative DNA damage and repair in a cell lineage model of human proliferative breast disease (PBD).

نویسندگان

  • Susan L Starcevic
  • Nicole M Diotte
  • Kim L Zukowski
  • Mark J Cameron
  • Raymond F Novak
چکیده

Oxidative damage to DNA is thought to play a significant role in mutagenesis, aging, and cancer. Sensitivity to oxidative DNA damage and DNA repair efficiency were examined using a series of human breast epithelial cell lines-MCF-10A, MCF-10AT, and MCF-10ATG3B-with progressively elevated Ras protein. Breast epithelial cells were treated with H2O2, in the absence and presence of the DNA-repair inhibitors hydroxyurea (HU) and cytosine arabinoside (Ara-C). DNA strand breaks were assessed by the mean olive tail moment (microm) using the alkaline single-cell gel electrophoresis (Comet) assay. In untreated cells, the mean olive tail moment values were 4.3 +/- 0.7, 8.3 +/- 1.1, and 7.1 +/- 0.6 microm in the MCF-10A, MCF-10AT, and MCF-10ATG3B cells, respectively. Five min H2O2 treatment produced concentration-dependent DNA damage, with the MCF-10A cells most susceptible and the tumorigenic MCF-10ATG3B cells the least susceptible. Treatment with 100 microM H2O2 resulted in approximately 17-, 6-, and 4.5-fold increases in mean olive tail moment values in the MCF-10A, MCF-10AT, and MCF-10ATG3B cells, respectively, compared to untreated cells. The HCC1937 tumor cell line responded in a manner comparable to the MCF-10ATG3B cells treated with H2O2, HU/Ara-C pre-treatment resulted in a approximately 1.5-fold increase in olive tail moment values in all three cell lines. Protein levels of antioxidant enzymes, including catalase, copper/zinc superoxide dismutase (Cu/Zn SOD), and manganese SOD (MnSOD) were determined in order to examine a potential mechanism for increased resistance to H2O2-mediated DNA damage. Levels of these enzymes increased progressively, with highest expression in MCF-10ATG3B cells. Increased cellular resistance also coincided with marked decreases in p53 protein levels. These results demonstrate that, in this cell lineage, sensitivity to oxidative DNA damage by H2O2 decreases with tumorigenicity (i.e., MCF-10A vs. MCF-10ATG3B), and show that DNA repair, altered Ras, and p53 expression, or compensatory mechanisms involving elevated antioxidant enzymes are involved in mediating these effects.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effects of low dose radiation on the expression of proteins related to DNA repair requiring Caveolin-1 in human mammary epithelial cells

Background: Radiotherapy is an effective and important therapeutic method for breast cancer, but at the same time it has a radiation-induced bystander effect on normal tissue around the tumor. Repair of double-strand breaks (DSBs) by normal cells can reduce the extent of damage caused by this effect. Caveolin-1 (Cav-1) is an important regulatory molecule in cell signal transduction. However, th...

متن کامل

Studies on electron beam induced DNA damage and repair kinetics in lymphocytes by alkaline comet assay

Background: Exposure to ionizing radiation is known to induce oxidative stress followed by damage to critical biomolecules like lipids, proteins and DNA through radiolysis of cellular water. Since radiation has been widely used as an important tool in therapy of cancer, the detailed investigation regarding the DNA damage and repair kinetics would help to predict the radiation sensitivity of cel...

متن کامل

OGG1 DNA Repair Gene Polymorphism As a Biomarker of Oxidative and Genotoxic DNA Damage

Background: Single nucleotide polymorphisms in 8-oxoguanine DNA glycosylase-1 (OGG1) gene modulates DNA repair capacity and functions as one of the first lines of protective mechanisms against 8-hydroxy-2’-deoxyguanosine (8-OHdG) mutagenicity. OGG1-Cys326 gene polymorphism may decrease DNA repair function, causing oxidative stress due to higher oxidative DNA damage. The main purpose of this stu...

متن کامل

Effects of Baneh (Pistacia atlantica) gum on Human Breast Cancer Cell Line (MCF-7) and Its Interaction with Anticancer Drug Doxorubicin

Pistacia atlantica is one of the species of Anacardiaceae that grows in the wild in different regions of Iran. Traditionally, anacardiaceae family has antibacterial, fungicidal and cytotoxic properties. Therefore, the present study was designed to investigate the possible cytotoxic and anti-proliferative properties of Baneh gum. Cytotoxicity of the plant gum was determined using MTT assay on MC...

متن کامل

Effects of Baneh (Pistacia atlantica) gum on Human Breast Cancer Cell Line (MCF-7) and Its Interaction with Anticancer Drug Doxorubicin

Pistacia atlantica is one of the species of Anacardiaceae that grows in the wild in different regions of Iran. Traditionally, anacardiaceae family has antibacterial, fungicidal and cytotoxic properties. Therefore, the present study was designed to investigate the possible cytotoxic and anti-proliferative properties of Baneh gum. Cytotoxicity of the plant gum was determined using MTT assay on MC...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Toxicological sciences : an official journal of the Society of Toxicology

دوره 75 1  شماره 

صفحات  -

تاریخ انتشار 2003